Accelerating Multi-Agent Reinforcement Learning
with LLM-Generated Reward Patches

Bowen Lv
School of Computer Science and Technology
Huazhong University of Science and Technology
Wuhan, China
ORCID: 0009-0004-4085-7321

Abstract—We propose a novel framework that leverages Large
Language Models (LLMs) to automate reward engineering for
Multi-Agent Reinforcement Learning (MARL). Instead of gener-
ating code or end-to-end policies, an LLM produces a structured
and human-readable reward patch that specifies shaping rewards,
penalties, and success conditions. This patch is then applied
to a pre-trained baseline policy during fine-tuning, effectively
decoupling reward logic from environment and agent code while
enhancing modularity and interpretability.

In the PettingZoo simple_spread environment, our method
achieves a significant average improvement of 3.6x in sample
efficiency compared to training with sparse rewards, with the
best run accelerating learning by up to 46x. An ablation study
highlights that these gains arise from the synergy between
foundational skills of the pre-trained policy and the task-specific
guidance of the LL.M-generated patch.

This work demonstrates a practical and efficient paradigm for
integrating generative Al into MARL, providing new insights into
cooperative multi-agent learning and reward design.

Index Terms—Multi-Agent Reinforcement Learning, Reward
Engineering, Large Language Models, Sample Efficiency, Trans-
fer Learning.

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) provides
a powerful paradigm for solving coordination problems in
domains such as robotic swarms, autonomous driving, and
resource management [[1], [2]. A major obstacle to practical
deployment, however, lies in the design of reward functions.
Sparse rewards—where agents receive feedback only upon
task completion—Ilead to extremely poor sample efficiency,
as agents rarely discover effective strategies through random
exploration. Manual reward shaping is often required, but it
is labor-intensive, brittle to task variations, and demands deep
domain expertise [3]], [4].

Recent advances in Large Language Models (LLMs) have
demonstrated impressive capabilities in code generation, rea-
soning, and planning, motivating their application to reinforce-
ment learning pipelines [3]], [6]]. Prior work has explored LLMs
as policy generators, planners, or even environment models.
While promising, these approaches often lack interpretability
and may require substantial computational resources.

In this paper, we introduce an alternative paradigm: LLM-
assisted reward engineering. Instead of generating executable
code or end-to-end policies, we prompt an LLM to produce a

structured reward patch—a simple, human-readable configura-
tion file (e.g., JSON) that specifies penalties, shaping rewards,
and success conditions. This patch is applied during fine-
tuning to a pre-trained baseline policy, effectively decoupling
reward logic from agent and environment code.

Our framework offers three main advantages:

e Modularity and Decoupling: Reward design is inde-
pendent of agent implementation, enabling rapid iteration
without modifying core components.

« Interpretability: The patch provides explicit and trans-
parent reward definitions, which can be easily inspected
and refined by human engineers.

« Efficiency: Combining a pre-trained policy with dense
LLM-generated guidance significantly improves sample
efficiency and accelerates adaptation to new tasks.

We validate our approach on the PettingZoo
simple_spread coordination task. Fine-tuning with
an LLM-generated reward patch improves sample efficiency
by an average of 3.6x compared to sparse-reward training,
with best-case performance reaching a 46x acceleration.
Ablation studies further highlight the synergy between
pre-trained foundations and LLM-generated guidance.
These results demonstrate a practical and scalable path
for integrating generative Al into cooperative multi-agent
learning.

II. METHODOLOGY

Our proposed framework consists of three main compo-
nents: (1) a baseline policy pre-trained on a foundational task,
(2) a structured reward patch generated by an LLM, and (3) an
event-driven mechanism that applies the patch during a fine-
tuning phase. The overall workflow is depicted in Fig. [T

A. Structured Reward Patch

The core of our method is the structured reward patch,
a configuration file that declaratively defines reward mod-
ifications. We use the JSON format for its simplicity and
readability. The patch is organized into three primary sections:

e penalties: Defines fixed negative rewards for unde-
sirable events (e.g., collisions, entering a hazard zone).

o shaping: Defines rewards or penalties that are scaled
by numerical values from the environment. This is used


https://orcid.org/0009-0004-4085-7321

Stage 1: Pre-training

} : l MARL Algorithm (IPPO) }—’ Pre-trained Baseline
L ) Policy

Structured Reward Patch
(Json)

Stage 2: Reward Generation

/Large Language Model
\ (L) /

Stage 3: Fine-tuning
-~Enironment Wrzpper Semantc Events
y Base Reward < / Policy
T (sparse) T

Fig. 1. Overall framework. A baseline policy is pre-trained with a sparse
reward. An LLM generates a reward patch from high-level instructions. The
patch is then used to fine-tune the baseline policy on the target task, guided
by dense rewards from an event-driven wrapper.

to create dense gradients, such as rewarding an agent for
reducing its distance to a target.

e success: Defines fixed positive rewards for achieving
key objectives (e.g., covering a landmark, completing the
entire task).

This structure allows an LLM to translate high-level instruc-
tions like agents should avoid collisions and cover landmarks
quickly” into a concrete set of machine-readable rules. Fig.
shows an example of such a patch.

"penalties": {
"enter_hazard": -1.0,
"collision": -0.2

}I

"shaping": {
"agentO_centroid_bonus": 0.05,
"time_progress_bonus": 0.01

s

"success": {
"landmark_coverage": 1.0

}
}

Listing 1. An example of a structured reward patch generated by the LLM. It
defines penalties, shaping rewards, and success conditions in a human-readable
JSON format.

B. Event-Driven Reward Application

To apply the reward patch, we introduce a lightweight envi-
ronment wrapper. This wrapper observes the underlying state
of the environment at each timestep and generates a dictionary
of rich, semantic events. These events can be boolean flags
(e.g., approach_landmark_close = true) or numerical values
(e.g., progress_vs_last_step = 0.1).

A PatchLoader module reads the reward patch and,
at each step, calculates the final reward for each agent by
combining the base environment reward with the modifications
specified in the patch, as triggered by the events from the

wrapper. The final reward R; for an agent at timestep ¢ is
computed as shown in Eq. (I):

Ry = Rpase + Z we']I(e)+ Z Wy -V

e€Evool VEEnum

(D

where Rpqse is the original environment reward, £p,o and
Enum are the sets of boolean and numerical events, I(e) is an
indicator function, and w,,w, are the corresponding weights
from the reward patch.

C. Pre-training and Fine-tuning

Our training process occurs in two stages:

1) Pre-training: We first train a baseline policy using a
standard MARL algorithm (e.g., Independent Proximal
Policy Optimization (IPPO) [7]) with only the sparse,
terminal reward from the original environment. This
allows the agents to learn fundamental skills, such as
basic movement and collision avoidance, without being
biased by a specific task.

2) Fine-tuning: We then load the weights of the pre-trained
policy and continue training (fine-tuning) on the target
task. During this phase, the reward patch is applied,
providing dense, task-specific signals that guide the
agents to an effective solution rapidly.

This two-stage process leverages transfer learning to maximize
sample efficiency.

III. EXPERIMENTS

A. Experimental Setup

extbfEnvironment: We use the simple_spread envi-
ronment from the PettingZoo library [1If], which features 3
agents tasked with cooperatively covering 3 landmarks. The
environment provides a sparse reward only when all landmarks
are covered.

Evaluation Metric: The default reward is sparse and
noisy. To better measure task performance, we use the mean
minimum distance, defined as the average of each agent’s
Euclidean distance to its nearest uncovered landmark. A lower
value indicates better performance. We use an Exponential
Moving Average (EMA) of this metric for smoother evalu-
ation.

Compared Methods: We compare three different training
strategies:

1) Baseline: Agents are trained from scratch using only the
sparse environment reward.

2) Scratch (Patched): Agents are trained from scratch
using the dense rewards from our reward patch. This
is an ablation to measure the impact of the patch alone.

3) Adapt (Pre-trained + Patch): Our full proposed
method. Agents are initialized from the pre-trained Base-
line model and fine-tuned using the reward patch.

All methods use the same IPPO implementation and hyperpa-
rameters for a fair comparison.



B. Results and Analysis

Fig. [2] presents the learning curves for the three methods.
The results clearly demonstrate the effectiveness of our ap-
proach.

Ablation Study: Impact of Pre-training and Reward Patch

—— Baseline (Sparse Reward)
0.900 Scratch (Patched Reward)
—— Adapt (Pre-trained + Patch)

0.875

0.850

0.825

0.800

\

o
3
3
o

EMA of Mean Minimum Distance to Landmark

0.750

10000 20000 30000 40000 50000
Global Steps

60000 70000 80000

Fig. 2. Ablation study results. Our full method, Adapt (Pre-trained + Patch),
significantly outperforms both the Baseline and training from scratch with the
patch, demonstrating the synergistic effect of pre-training and reward patching.

Quantitative Analysis: We measure the sample efficiency
by the number of environment steps required to reach a
performance threshold of ema_mean_min_dist < 0.75. The
results are summarized in Table |l The Adapt method reaches
the threshold in an average of 19,456 steps, representing
a 3.6-fold improvement over the Baseline, which required
70,656 steps. While this average improvement is significant,
the best-case run for the Adapt method reached the threshold
in just 1,536 steps (a 46-fold improvement), highlighting
the method’s high potential but also indicating variability in
performance across runs.

TABLE I
SAMPLE EFFICIENCY COMPARISON

Method Steps to reach threshold (< 0.75)
Baseline (Sparse Reward) 70,656
Scratch (Patched Reward) > 100, 000

Adapt (Pre-trained + Patch) 19,456 (avg.)

Ablation Study Insights: The performance of the Scratch
(Patched) method provides a crucial insight. While it learns
faster than the Baseline initially, it fails to converge to a
strong policy and never consistently reaches the performance
threshold. This indicates that while the dense reward patch
provides essential guidance, it is not sufficient on its own.
The agents appear to get stuck in a local optimum.

In contrast, the Adapt method, which starts from a pre-
trained policy, leverages the foundational knowledge of basic
coordination and immediately utilizes the patch’s guidance to
solve the task efficiently. This confirms our hypothesis: the
remarkable performance gain is due to the synergy between
a solid pre-trained foundation and the sharp, task-specific
guidance of the LLM-generated reward patch.

IV. RELATED WORK

Our work intersects with several research areas, including
reward shaping, multi-agent reinforcement learning, and the
application of LLMs to sequential decision-making.

Classical reward shaping, formally introduced by Ng et al.
[3]l, provides a theoretical foundation for designing potential-
based reward functions that guarantee policy invariance. How-
ever, manually designing such functions remains a significant
challenge. Our work automates the generation of shaping
signals, though we do not formally enforce the potential-based
constraint, prioritizing practical performance and flexibility.

In the context of LLMs for RL, many works have focused on
using LLMs as high-level planners or to generate executable
code. For instance, some approaches prompt LLMs to write
the reward function code directly within a script [8]], while
others generate entire policy programs . Our method differs by
proposing a decoupled, structured representation (the reward
patch), which enhances modularity and interpretability. It
allows a human engineer to easily verify and edit the LLM’s
output without touching the agent’s source code, fostering a
more robust human-in-the-loop workflow.

V. CONCLUSION

This paper presented a novel framework for accelerating
Multi-Agent Reinforcement Learning by using Large Lan-
guage Models to generate structured reward patches. Our
experiments demonstrated that by fine-tuning a pre-trained
policy with an LLM-generated patch, we can achieve a sig-
nificant 3.6-fold average improvement in sample efficiency on
a canonical coordination task, with best-case results showing
up to a 46-fold acceleration. A key finding from our ablation
study is that this success stems from the powerful synergy
between the general skills learned during pre-training and the
dense, task-specific guidance provided by the patch.

The proposed method offers a modular, interpretable, and
highly efficient paradigm for reward engineering. Future work
will involve applying this framework to more complex, 3D
environments and exploring methods for enabling the LLM to
iteratively refine the reward patch based on agent performance
feedback.

ACKNOWLEDGMENT

I would like to express my heartfelt gratitude to my family
and friends for their unwavering support and encouragement
throughout the research and writing process. Their invaluable
emotional and intellectual support has been instrumental in the
completion of this work.

REFERENCES

[1] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and 1. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.02275

[2] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” 2017. [Online]. Available:
https://arxiv.org/abs/1705.08926

[3]1 A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under re-
ward transformations: Theory and application to reward shaping,” in
Machine learning: Sixteenth international conference on machine learn-
ing(ICML’99), June 27-30, 1999, Bled, Slovenia, 1999.


https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1705.08926

(4]
(51
(6]

(71

(8]

D. Silver, S. Singh et al., “Reward is enough,” Artificial Intelligence,
2021.

OpenAl, “Gpt - 4 technical report,” arXiv preprint arXiv:2303.08774,
2023. [Online]. Available: |https://arxiv.org/abs/2303.08774

X. Wang and et al., “A survey on large language model based
autonomous agents,” Frontiers of Computer Science, 2023. [Online].
Available: http://dx.doi.org/10.1007/s11704-024-40231-1

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The surprising effectiveness of ppo in cooperative, multi-agent games,”
2021. [Online]. Available: jhttps://arxiv.org/abs/2103.01955

W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas,
H.-T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, B. Ichter, T. Xiao,
P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh, J. Tan, Y. Tassa, and
F. Xia, “Language to rewards for robotic skill synthesis,” 2023. [Online].
Available: https://arxiv.org/abs/2306.08647


https://arxiv.org/abs/2303.08774
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2306.08647

	Introduction
	Methodology
	Structured Reward Patch
	Event-Driven Reward Application
	Pre-training and Fine-tuning

	Experiments
	Experimental Setup
	Results and Analysis

	Related Work
	Conclusion
	References

